
Techniques for Benchmarking of CPU

Micro-Architecture for Performance Evaluation

Varad Deshmukh∗1, Nishchay Mhatre∗1, and Shrirang K. Karandikar2

1College of Engineering, Pune
2Computational Research Laboratories, Tata Sons Ltd.

Abstract—CPU Micro-architecture has a

significant impact on performance and hence

is of special importance to the High-

Performance Computing industry. In this pa-

per, we describe the development of a suite

of benchmark programs which enables us to

evaluate and compare processors based on the

performance of the micro-architecture itself,

independent of workload characteristics. The

benchmark suite is comprehensive in its cov-

erage of important hardware features that im-

pact performance. The benchmark programs

run directly on the CPU hardware as opposed

to processor simulators and use innovative

methods that we have developed to stress

and benchmark programmer-invisible micro-

architectural features. We run the benchmarks

on machines representing a variety of micro-

architectures and develop a mathematical ap-

proach towards analysis of the results. We then

verify our approach using data published by

CPU manufacturers and the SPEC suite.

I. Motivation and Previous Work

Evaluation and comparison of micro-
architectures is of great importance and utility
to the HPC industry, since even minute
micro-architecture improvements can make a
difference in HPC cluster performance.

The traditional approach, using high-level ap-
plication suites, fails to relate performance di-
rectly to the micro-architectural characteristics,
unless it is used in conjunction with the profile
of the application. However, hardware should be

∗ Student authors. This work was done during their
internship with Tata CRL.

evaluated on the basis of the performance of its
constituent components, independent of applica-
tion characteristics. Such evaluation requires the
use of unconventional benchmark programs, be-
cause micro-architecture is inherently invisible
to the programmer. Such programs are written
for optimisation or tuning of HPC applications
and compilers rather than for measurement of
hardware performance, for example [1], [2].

Studies that focus on performance evaluation,
such as [3], [4], [5], [6], [7] and [8] mostly
use CPU simulations. Just like available bench-
mark packages, such as STREAM [9], Ramspeed
[10], 7-bench [11], they lack comprehensiveness
in terms of hardware features measured. Some
works, like [3], [12] introduce useful mathemat-
ical tools and and methods of analysis, but
without benchmarks.

Our work brings together all the aspects. We
have integrated benchmarks for all the impor-
tant micro-architecture features in one pack-
age, developing new benchmarks wherever war-
ranted. These benchmarks are executed directly
on hardware and coupled with an analysis tech-
nique, thus characterising the processor based
on performance of its micro-architectural fea-
tures, independent of the application profile.

II. Micro-architecture benchmarking

approach:

To make the benchmark comprehensive, we
consider the set of micro-architectural features
which have the greatest influence on perfor-
mance. The criteria for choosing these match the
quantitative considerations used in CPU micro-

architecture design, as explained in [13]. We
map each feature to a set of execution ‘events’
associated with it and associate every event
with a quantitative measure of performance. We
recognise five features and seventeen quantities
in all.

We develop benchmarks containing precise ex-
ecution sequences that exploit the fundamental
limitations of the micro-architectural features
and deterministically give rise to the events
of interest. Accurate performance measurement
counters are used to time these code sequences.
The values measured by these counters are pro-
portional to the performance of the correspond-
ing hardware feature.

Using this approach, we developed new tech-
niques for benchmarking the data cache, in-
struction cache and branch predictors. These
are presented in table I. Existing techniques
similar to those in [5] and [4] were used for
benchmarking the TLB and functional units
respectively and are not described here. Also, for
brevity, only one of the new techniques - branch
predictor benchmarking - is described in detail
to exemplify our approach.

A. Branch Predictor Benchmark: Tree-of-Code

Technique

In this method, we generate code in the form
of basic blocks arranged as a binary tree. This
layout is shown in Figure 1. Each block contains
a set of arithmetic instructions, followed by a
conditional branch. Execution of code in block
n of the tree, falls through to the left child block
- 2n (located sequentially in program memory)
for an ‘untaken’ branch and jumps to the right
block - 2n + 1 in case of a taken branch.

We control the total number of branches and
saturate the hardware of the branch predictors
by using a large tree with every branch at a
distinct address in the code.

We initialise a variable with a particular se-
quence of bits. Instructions in each block check
the value of the bit corresponding to the block
number. The jump is taken if the bit is one.
Execution falls through to the next block if the

1

2

5

3

64

8 12 10 9 1314

7

15

 Fall
Through

Blocks in the same column are physically contiguous

Col 2 Col 3 Col 4 Col 5 Col 6Col 0 Col 1

Branch taken from node ‘n’ to ‘2n + 1’

Fig. 1. Branch Predictor benchmark: Layout of code
blocks

bit is a zero. By controlling the sequence of the
bits in the pattern, we predetermine the flow of
execution. By controlling the randomness of the
bits, we control the degree of predictability.

A pattern of all 1’s or all 0’s is a highly pre-
dictable pattern (best case), and causes very few
mispredictions. On the other hand, a random
sequence of 1’s and 0’s, with an equal number
of both, is an unpredictable pattern (worst case)
and causes more mispredictions.

By timing the execution for both high and low
predictability cases and taking their difference,
we get a quantity proportional to the penalty of
misprediction and to the predictor accuracy.

Using this technique we have obtained the
performance of branch predictors. We checked
the accuracy of prediction, using on-chip per-
formance counters for both high and low pre-
dictability cases. We found that the mispredic-
tion rate was close to 0.05% in the former and
up to 30% in the latter case. This validates our
method of varying predictability. Since a 30%
miss rate is unlikely for most real programs, it
is sufficiently bad as a ‘worst case’ condition.

III. Machine comparison using

performance vectors

We measure the values of the seventeen quan-
tities, using our benchmarks and measurement
techniques for a variety of micro-architectures.

2

TABLE I
Micro-Architecture Benchmarks

Hardware Event Quantity Benchmark Technique
Feature Caused Measured Program

Data cache Cache miss Miss penalty FIRA An array larger than last level cache is
(capacity) (Forward accessed from first index to last.

Initialisation Accessing different parts of the array in
- Reverse reverse order, we cause a known number of
Access) cache misses in each level.

Instruction Cache miss Miss penalty Cyclic-Jump The code contains a long, cyclic series of
cache (conflict) unconditional jumps to addresses in the same

set. By saturating the set, we cause a known
number of ‘conflict’ misses.

Branch Predictor Misprediction Accuracy of prediction Tree of Code Described in detail in
of Branch section II-A
Outcome Misprediction penalty

We define a ‘vector’ unique to each machine,
characterising its micro-architecture level per-
formance. Each of the seventeen characteristics
is a dimension of this vector and its measured
value is the component of the vector along that
dimension, as shown in the radar-chart in Figure
2.

A one-to-one comparison can be made be-
tween micro-architectures using the vectors. A
simple comparison of the components along the
axes, tells us which micro-architecture is better
with respect to which particular characteristic –
an impossible task with high-level benchmarks.
For example, the Nehalem-EP and Clarkdale
micro-architectures are compared in Figure 2.

Figure 3 shows the Kiviat graphs for all the
test machines measured. On a visual inspec-
tion they can be classified into groups with
similar looking shapes. It is interesting to note
that these groups exactly correspond to the
micro-architecture design families from Intel and
AMD. Similar looking graphs are observed to be
from the same family while distinctly different
graphs represent other design philosophies.

IV. Pershape analysis of machine

performance vectors

We use a quantitative measure of the simi-
larities and differences revealed by the bench-
mark suite, called the ‘pershape distance’. First
defined in [3], we adapt this to the micro-

0 1 2 3 [L1R]

[L2R]

[L3R]

[L1W]

[L2W]
[L3W]

[L1-TLB]

[L2-TLB]

[RAM]

[SBM]

[L1I]

[XMM-Mul-Lat]

[XMM-Mul-RT]

[Int-Mul-Lat]

[Int-Mul-RT]

[FP-Mul-Lat]

[FP-Mul-RT]

Clarkdale v/s Nehalem

Clarkdale Nehalem

Fig. 2. Comparison of Nehalem and Clarkdale Micro-
Architectures. Smaller values indicate better perfor-
mance. Scale is logarithmic to base 10.

3

Fig. 3. Micro-Architectures By Family: Top left: Yonah
(P6 family), top right: Prescott (Netburst). Middle row:
Conroe, Clovertown and Merom (Core). Bottom row:
Shanghai and Thuban (AMD K10).

architecture benchmark results. This is a metric
which represents the variability of performance
between two machines, over the whole spectrum
of workload profiles. Even if the clock frequen-
cies of the two machines change, the differences
between the overall distribution of their perfor-
mance parameters does not change. Pershape
distance also has this property.

If the pershape distance between two ma-
chines is small, their performance across the dif-
ferent types of workloads is more or less similar,
else the machines differ significantly. There is
no bias introduced by differences in operating
frequency.

We calculate the pershape distances between
our test processors and draw a graph, where
the micro-architectures are the nodes and the
pershape distances are edge weights, as shown
in Figure 4. We observe that the groups formed
in this graph are exactly the same as the family
relations that we observed in the previous sec-
tion. Edge weights between members of the same
family are small as compared to those between
different families.

Core

0.2

0.5

0.6

Con

Clov

Mer

NetburstPrsct

P6

Yon

Nehalem

0.2

Cla Neh

K10
0.2

Shn Thub

0.95

1.52

0.6

0.5

0.5

1.32

1.47

Fig. 4. Comparison of Nehalem and Clarkdale Micro-
Architectures

V. Comparison with Published

Information

We can draw certain inferences about the rel-
ative performance of particular features of two
micro-architectures after a comparison along the
corresponding dimensions of their performance
vectors.

Our hypothesis is that if a majority of pub-
lished performance results for two machines A

and B show that A performs better in a program
X, and the value of the performance vector
dimension related to X is better for A, then we
can say that micro-benchmark results correlate
with those of the high level benchmarks and the
hypothesis is verified.

We use published data from Intel and AMD
and the SPEC CPU INT 2006 [14] results for the
different micro-architectures with a statistical
comparison program, to make such a compar-
ison. We find a correlation between 87 and 99%.

4

Fig. 5. Correlation of Pershape Distances and SPEC
results

The SPEC results are highly workload-
dependent. To approximate the overall distribu-
tion of performance, we take the maximum value
and minimum values among the quotients of the
SPEC results of any two processors and calcu-
late the ratio of the two. This ‘Max/Min’ ratio
is the closest approximation we can make to the
pershape distance with a high level benchmark.
We obtain the ratios for the machine pairs and
compare them with the pershape distances.

A comparison of the maximum to minimum
ratios with the pershape distances is shown in
Figure 5. The X axis represents different pairs
of machines and the Y axis shows both the
pershape distances as well as the scaled down
Max/Min ratios. The upper line depicts the vari-
ation of Max/Min ratio across machines, while
the lower line represents the pershape distances
between the machines.

The trend followed by both is the same. This
shows that the same information about overall
performance as is provided by the high level
benchmarks, can be provided by the micro-
architecture benchmarking suite.

VI. Conclusion

We have developed a comprehensive, repre-
sentative set of benchmarks, which uses some
new methods of micro-architecture benchmark-
ing and compares machines independent of
workload profile. We have demonstrated that

the results provided by this suite are on the
expected lines of theory and previously avail-
able results. Thus, this suite represents a new,
more direct approach toward measuring CPU
performance and comparing micro-architectures
and a potential improvement over traditional
methods.

References

[1] J. Demmel. Single processor machines: Memory
hierarchies and processor features; case study:
Tuning matrix multiply. [Online]. Available: http:
//www.cs.berkeley.edu/˜demmel/cs267 Spr09/

[2] R. H. Arpaci-Dusseau et al.,“Empirical evaluation of
the cray-t3d: A compiler perspective.” in ISCA’95,
1995, pp. 320–331.

[3] R. H. Saavedra-Barrera, “Cpu performance evalu-
ation and execution time prediction using narrow
spectrum benchmarking,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, Feb
1992.

[4] T. Granlund, “Instruction latencies and throughput
for amd and intel x86 processors,”CSC, KTH, Tech.
Rep., 2009.

[5] Y. Yuanhua, “Measurement of data cache and tlb
parameters under linux,” Ph.D. dissertation, De-
partment of Computer Science, The University of
Auckland, 2000.

[6] M. Sakamoto et al., “Microarchitecture and perfor-
mance analysis of a sparc-v9 microprocessor for en-
terprise server systems,” in International Symposium

on High-Performance Computer Architecture, 2003,
pp. 141–152.

[7] K. Skadron. (1999) Characterizing and removing
branch mispredictions.

[8] S. Eyerman et al., “Characterizing the branch mis-
prediction penalty,” in International Symposium on

Performance Analysis of Systems and Software,
2006, pp. 48–58.

[9] [Online]. Available: http://www.cs.virginia.edu/
stream/

[10] [Online]. Available: http://alasir.com/software/
ramspeed/

[11] [Online]. Available: http://www.7-cpu.com/
[12] U. Krishnaswamy and I. D. Scherson, “Micro-

architecture evaluation using performance vectors,”
in SIGMETRICS, 1996, pp. 148–159.

[13] J. Hennessy and D. A. Patterson, Computer Archi-

tecture, A Quantitative Approach, Fourth Edition.
Morgan Kaufmann Publishers, San Francisco, CA,
2007.

[14] [Online]. Available: http://www.spec.org/

5

